Light management for photovoltaics using high-index nanostructures.

نویسندگان

  • Mark L Brongersma
  • Yi Cui
  • Shanhui Fan
چکیده

High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways to manipulate light at a subwavelength scale. For example, nanoscale wires, particles and voids support strong optical resonances that can enhance and effectively control light absorption and scattering processes. As such, they provide ideal building blocks for novel, broadband antireflection coatings, light-trapping layers and super-absorbing films. This Review discusses some of the recent developments in the design and implementation of such photonic elements in thin-film photovoltaic cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanostructures for photon management in solar cells

The concurrent development of high-performance materials, new device and system architectures, and nanofabrication processes has driven widespread research and development in the field of nanostructures for photon management in photovoltaics. The fundamental goals of photon management are to reduce incident light reflection, improve absorption, and tailor the optical properties of a device for ...

متن کامل

Light Trapping on Plasmonic-Photonic Nanostructured Fluorine- Doped Tin Oxide

Plasmonic Au nanoparticles of ∼50−200 nm in diameter were generated via thermally assisted self-assembly from Au films evaporated on fluorine-doped tin oxide (FTO). A comparative study has been made on the light trapping effects of the plasmonic Au nanoparticles on original FTO and FTO with photonic nanopatterns fabricated using nanoimprint lithography. While strong localized surface plasmon re...

متن کامل

Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications

In order to make photovoltaics an economically viable energy solution, next-generation solar cells with higher energy conversion efficiencies and lower costs are urgently desired. Among many possible solutions, three-dimensional (3D) silicon nanostructures with excellent light-trapping properties are one of the promising candidates and have recently attracted considerable attention for cost-eff...

متن کامل

Surface antireflection properties of GaN nanostructures with various effective refractive index profiles.

GaN nanostructures with various effective refractive index profiles (Linear, Cubic, and Quintic functions) were numerically studied as broadband omnidirectional antireflection structures for concentrator photovoltaics by using three-dimensional finite difference time domain (3D-FDTD) method. Effective medium theory was used to design the surface structures corresponding to different refractive ...

متن کامل

Light Management with Nanostructures for Optoelectronic Devices.

Light management is of paramount importance to improve the performance of optoelectronic devices including photodetectors, solar cells, and light-emitting diodes. Extensive studies have shown that the efficiency of these optoelectronic devices largely depends on the device structural design. In the case of solar cells, three-dimensional (3-D) nanostructures can remarkably improve device energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2014